An unsupervised classification method for inferring original case locations from low-resolution disease maps
نویسندگان
چکیده
BACKGROUND Widespread availability of geographic information systems software has facilitated the use of disease mapping in academia, government and private sector. Maps that display the address of affected patients are often exchanged in public forums, and published in peer-reviewed journal articles. As previously reported, a search of figure legends in five major medical journals found 19 articles from 1994-2004 that identify over 19,000 patient addresses. In this report, a method is presented to evaluate whether patient privacy is being breached in the publication of low-resolution disease maps. RESULTS To demonstrate the effect, a hypothetical low-resolution map of geocoded patient addresses was created and the accuracy with which patient addresses can be resolved is described. Through georeferencing and unsupervised classification of the original image, the method precisely re-identified 26% (144/550) of the patient addresses from a presentation quality map and 79% (432/550) from a publication quality map. For the presentation quality map, 99.8% of the addresses were within 70 meters (approximately one city block length) of the predicted patient location, 51.6% of addresses were identified within five buildings, 70.7% within ten buildings and 93% within twenty buildings. For the publication quality map, all addresses were within 14 meters and 11 buildings of the predicted patient location. CONCLUSION This study demonstrates that lowering the resolution of a map displaying geocoded patient addresses does not sufficiently protect patient addresses from re-identification. Guidelines to protect patient privacy, including those of medical journals, should reflect policies that ensure privacy protection when spatial data are displayed or published.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملComparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملA New Tool for Information Extraction and Mining from Satellite Imagery Available from Google Maps Engine
The wealth of satellite imagery available in web mapping service applications such as Google Maps, which now provides high-resolution satellite images from many locations around the Earth, has opened the appealing perspective of performing information extraction and mining tasks via the Google Maps application programming interface (API). In fact, the introduction of Google's mapping engine (th...
متن کاملIRS-1C image data applications for land use/land cover mapping in Zagros region, Case study: Ilam watershed, West of Iran
In land use planning, mapping the present land use / land cover situation is a necessary tool for determining the current condition and for identifying land use trends. In this study, in order to provide a land use/ land cover map for Ilam watershed, the IRS-1C image data from 25th April 2006 were used. Initial qualitative evaluation on data showed no significant radiometric error. Ortho-rectif...
متن کاملپهنهبندی کاربری اراضی منطقه شرق اصفهان با استفاده از تصویر ماهوارهای IRS-P6
LISS IV sensor's data from IRS-P6 satellite was used to produce land use map of eastern region of Isfahan, the studied part of which has an area of 22121 hectares. Its three band data, namely band 2 (Green), band 3 (Red) and band 4 (Near infra red) of LISS-IV sensor images with 5.8 m ground resolution were georeferenced by nearest neighbor method and first-order polynomial model to the DEM map ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Health Geographics
دوره 5 شماره
صفحات -
تاریخ انتشار 2006